基于最大流中心性指標(biāo)的電網(wǎng)脆弱性分析
術(shù)茜,林毅斌,陳少芳
(國網(wǎng)漳州供電公司,福建 漳州 363000)
摘 要:根據(jù)電力系統(tǒng)功率不一定只通過最短路徑流動的思想,提出了一種基于線路流過的最大功率流的中心性指標(biāo)識別方法。該方法在考慮物理連接拓撲特性的同時,還考慮了系統(tǒng)的電氣特性,把導(dǎo)納矩陣作為網(wǎng)絡(luò)的權(quán)值,建立電力系統(tǒng)的有向模型,計算網(wǎng)絡(luò)最大流,通過中心性指標(biāo)來識別網(wǎng)絡(luò)的脆弱線路。以IEEE39節(jié)點系統(tǒng)作為算例,并通過PSAT 軟件進行時域仿真,驗證了辨識線路的有效性。
關(guān)鍵詞:電力系統(tǒng);最大流;中心性指標(biāo)
中圖分類號:TM711 文獻標(biāo)識碼:A 文章編號:1007-3175(2019)02-0025-04
Vulnerability Analysis of Power Grid Based on Maximum Flow Centrality Index
ZHU Xi, LIN Yi-bin, CHEN Shao-fang
(State Grid Zhangzhou Power Supply Company, Zhangzhou 363000, China)
Abstract: According to the thought that the power might not necessarily flow only through the shortest path, this paper proposed a kind of centrality indexidentification method based on maximum power flow through the circuits. This method considered not only the physical connection topological property, but also the system electrical specification, took the admittance matrix as the weight of network, built the directed model of power system and calculated the maximum flow of network. The centrality index was used to identify the vulnerability circuit of network. Taking IEEE39 node system for example, this paper carried out time-domain simulation to verify the validity of identification circuit.
Key words: power system; maximum flow; centrality index
參考文獻
[1] ERDOS P, RENYI A. On the evolution of random graphs[J].Transactions of the American Mathemational Society,2011,286(1):257-274.
[2] WATTS D J, STROGATZ S H.Collective dynamics,of“small-world”networks[J]. Nature,1998,393(6684):440-442.
[3] WATTS D J.Small Worlds:They Dynamics of Networks between Order and Randomness[J]. Emergence Complexity & Organization,1999,31(2):74-75.
[4] LATORA V, MARCHIORI M.Efficient behaviour of small-world networks[J]. Physical Review Letters,2001,87(19):198701.
[5] BARABASI A L, ALBERT R.Emergence of scaling in random networks[J]. Science,1999,286(5439):509-512.
[6] 丁明,韓平平. 基于小世界拓撲模型的大型電網(wǎng)脆弱性評估算法[J]. 電力系統(tǒng)自動化,2006,30(8):7-10.
[7] AMARAL L A N, SCALA A, BARTHELEMY M, STANLEY H E.Classes of small world networks[J]. Proceedings of the National Academny of Sciences of the United States of America,2000,97(21):11149-11152.
[8] HINES P, BLUMSACK S. A centrality measure for electrical networks[C]//Proceedings of 41st Hawaii International Conference on System Sciences,2008:185.
[9] ALBERT R, JEONG H, BARABASI A L. Error and attack tolerance of complex networks[J]. Nature,2000,340(1):378-382.
[10] 陳曉剛,孫可,曹一家. 基于復(fù)雜網(wǎng)絡(luò)理論的大電網(wǎng)結(jié)構(gòu)脆弱性分析[J]. 電工技術(shù)學(xué)報,2007,22(10):138-144.
[11] 丁明,韓平平. 加權(quán)拓撲模型下的小世界電網(wǎng)脆弱性評估[J]. 中國電機工程學(xué)報,2008,28(10):20-25.
[12] CHASSIN D P, POSSE C. Evaluating North American Electric Grid Reliability Using the Barabasi-Albert Network Model[J]. Physica A Statistical Mechanics & Its Applications,2005,355(2):667-677.
[13] 田豐,馬仲蕃. 圖與網(wǎng)絡(luò)流理論[M]. 北京:科學(xué)出版社,1987.
[14] 曹一家,陳曉剛,孫可. 基于復(fù)雜網(wǎng)絡(luò)理論的大型電力系統(tǒng)脆弱線路辨識[J]. 電力自動化設(shè)備,2006,26(12):1-5.