考慮電能質(zhì)量的光伏優(yōu)化配置研究
史恒逸1,鄒德龍2
(1 南京理工大學(xué) 自動(dòng)化學(xué)院,江蘇 南京 210094;2 南瑞集團(tuán)有限公司(國(guó)網(wǎng)電力科學(xué)研究院有限公司),江蘇 南京 211000)
摘 要:粒子群算法和遺傳算法是現(xiàn)在光伏規(guī)劃中常用的方法,但前者容易陷入局部最優(yōu)點(diǎn),而后者的迭代收斂速度較慢且計(jì)算過(guò)程繁瑣。提出了一種新的混合優(yōu)化算法,即將遺傳算法與粒子群算法結(jié)合起來(lái),用二進(jìn)制編碼的方式將光伏的接入位置加入到粒子的信息中,利用仿真實(shí)驗(yàn)對(duì)考慮電能質(zhì)量的光伏優(yōu)化配置進(jìn)行了驗(yàn)證分析,并利用改進(jìn)的混合優(yōu)化算法對(duì)數(shù)學(xué)模型進(jìn)行求解,仿真結(jié)果證明了改進(jìn)規(guī)劃算法的合理有效性。
關(guān)鍵詞:光伏規(guī)劃;電能質(zhì)量;配網(wǎng)規(guī)劃;規(guī)劃算法
中圖分類號(hào):TM615;TM715 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1007-3175(2020)02-0006-06
Research on Optimal Configuration of Photovoltaic System Considering Power Quality
SHI Heng-yi1, ZOU De-long2
(1 School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China;
2 NARI Group Corporation (State Grid Electric Power Research Institute), Nanjing 211 000, China)
Abstract: Particle swarm optimization (PSO) and genetic algorithm (GA) are commonly used in photovoltaic programming nowadays, but the former is easy to fall into local optimum, while the latter has a slow convergence rate and a cumbersome calculation process. This paper proposed a kind of new hybrid optimization algorithm, which combined GA with PSO and used the binary coding mode to make the interconnected location of photovoltaic join the message of particle. The simulation experiment was used to carry out the check analysis to the optimal configuration of photovoltaic system considering power quality and the improved hybrid optimization algorithm was used to solve the problem of mathematic model. The simulation experiments show that the improved planning algorithm is reasonable and effective.
Key words: photovoltaic planning; power quality; distribution network planning; planning algorithm
參考文獻(xiàn)
[1] 耿曉娜,劉俊德,范振亞,劉偉東. 含充電站及光伏電源的配電網(wǎng)協(xié)調(diào)規(guī)劃[J]. 華北電力技術(shù),2017(5):1-8.
[2] 丁磊,劉俊勇,劉友波,向月,蘇韻掣,張逸. 考慮分布式發(fā)電商投資的區(qū)域配電網(wǎng)光伏儲(chǔ)能容量配置[J]. 可再生能源,2017,35(3):374-383.
[3] 涂宏燁,張冀新. 基于二層規(guī)劃模型光伏電站經(jīng)濟(jì)性評(píng)價(jià)[J]. 中國(guó)集體經(jīng)濟(jì),2016(28):57-59.
[4] 韓曉娟,王麗娜,高僮,修曉青. 基于成本和效益分析的并網(wǎng)光儲(chǔ)微網(wǎng)系統(tǒng)電源規(guī)劃[J]. 電工技術(shù)學(xué)報(bào),2016,31(14):31-39.
[5] 程志友,朱唯韋,陶青,王淼,胡正楊. 基于改進(jìn)雷達(dá)圖的配電系統(tǒng)電能質(zhì)量評(píng)估方法[J]. 電測(cè)與儀表,2019,56(14):34-39.
[6] 鐘建偉,姜芮,王晨. 高滲透率的分布式電源并網(wǎng)后電能質(zhì)量評(píng)估[J]. 電氣自動(dòng)化,2018,40(1):48-50.
[7] 皮顯松,李慶生,趙慶明,胡畔,鄧云飛. 高鐵污染性負(fù)荷接入電網(wǎng)規(guī)劃模型[J]. 電力系統(tǒng)及其自動(dòng)化學(xué)報(bào),2018,30(2):129-137.
[8] 金卓勍,向鐵元,陳紅坤,陳若男,陶?qǐng)A. 考慮電能質(zhì)量問(wèn)題的分布式光伏發(fā)電接入規(guī)劃方法[J].電力系統(tǒng)保護(hù)與控制,2017,45(9):1-8.
[9] 熊以旺,程浩忠,王海群,徐俊. 基于改進(jìn)AHP和概率統(tǒng)計(jì)的電能質(zhì)量綜合評(píng)估[J]. 電力系統(tǒng)保護(hù)與控制,2009,37(13):48-52.
[10] 張占安,蔡興國(guó). 采用熵理論確定抽水蓄能容量[J]. 電機(jī)與控制學(xué)報(bào),2014,18(3):34-39.
[11] 丁少倩,林濤,徐遐齡,黃景慧,田春箏. 基于改進(jìn)的AHP-熵權(quán)法的電網(wǎng)綜合脆弱性評(píng)估方法研究[J]. 電測(cè)與儀表,2017,54(4):28-33.
[12] 蔣曉屾,任佳,顧敏明. 多維度慣性權(quán)重衰減混沌化粒子群算法及應(yīng)用[J]. 儀器儀表學(xué)報(bào),2015,36(6):1333-1341.
[13] 包廣清,楊國(guó)金,楊勇,常勇. 基于改進(jìn)遺傳算法的光伏發(fā)電并網(wǎng)優(yōu)化配置[J]. 電力建設(shè),2014,35(6):13-17.