多能互補的微電網(wǎng)經(jīng)濟運行優(yōu)化
施愛文
(連云港三新供電服務有限公司灌南分公司,江蘇 灌南 223500)
摘 要:為降低微電網(wǎng)發(fā)電成本,考慮實際運行的約束條件,以調(diào)度周期內(nèi)發(fā)電總成本最小為目標建立模型。為防止天牛須搜索算法( 簡稱天牛算法) 陷于局部最優(yōu),將Metropolis準則加入標準天牛算法中增加變異的概率,并將改進天牛算法與標準天牛算法分別求解微電網(wǎng)日前調(diào)度模型,仿真結(jié)果表明,利用改進算法求出的調(diào)度方案能夠合理安排機組的出力,降低并網(wǎng)模式下微電網(wǎng)運行的總發(fā)電成本。
關鍵詞:微電網(wǎng);經(jīng)濟調(diào)度;天牛須搜索算法;Metropolis準則
中圖分類號:TM714 文獻標識碼:A 文章編號:1007-3175(2020)11-0028-03
Economic Operation Optimization of Microgrid with Multiple Complementary Functions
SHI Ai-wen
(Guannan Branch of Lianyungang Sanxin Power Supply Service Co., Ltd, Guannan 223500, China)
Abstract: In order to reduce the generation cost of micro-grid, considering the constraints of actual operation, the model is established with the goal of minimizing the total power generation cost in the dispatch period. In order to prevent the beetle antennae search algorithm from falling into the local optimum, the Metropolis criterion was added to the standard beetle antennae search algorithm to increase the probability of mutation, and the improved beetle antennae search algorithm and the standard beetle antennae search algorithm were separately solved for the day-ahead scheduling model of the micro-grid. The simulation results show that the dispatch plan obtained by the improved algorithm can reasonably arrange the output of the units and reduce the total power generation cost of the micro-grid operation in the gridconnected mode.
Key words: micro-grid; economic dispatch; beetle antennae search algorithm; Metropolis criterion
參考文獻
[1] 李佳華,馬連博,王興偉,等. 基于多目標蜂群進化優(yōu)化的微電網(wǎng)能量調(diào)度方法[J]. 鄭州大學學報( 工學版),2018,39(6):50-58.
[2] 宋學偉, 劉天羽, 劉玉瑤. 考慮環(huán)保性與自治性的主動配電網(wǎng)能量優(yōu)化管理[J]. 電工電氣,2019(6):58-62.
[3] 翟云峰,易國偉,王亦,等. 基于改進帝國競爭算法的微網(wǎng)動態(tài)經(jīng)濟調(diào)度[J]. 電力科學與工程,2015,31(5):34-41.
[4] 朱宗耀. 計及電動汽車充電負荷的微電網(wǎng)能量優(yōu)化調(diào)度研究[D]. 西安:西安理工大學,2018.
[5] 高佳,肖迎群. 風、光、燃、儲多源互補微電網(wǎng)的日優(yōu)化運行[J]. 科學技術與工程,2019,19(15):136-142.
[6] 李正茂. 基于電熱聯(lián)合調(diào)度的微電網(wǎng)運行優(yōu)化[D].濟南:山東大學,2016.
[7] 周磊,董學育,孫飛. 基于改進人工魚群算法的微電網(wǎng)經(jīng)濟調(diào)度[J]. 供用電,2019,36(12):62-68.
[8] 韓瑞達. 基于天牛須搜索和變異策略的花朵授粉算法研究[D]. 葫蘆島:遼寧工程技術大學,2018.
[9] 王甜甜,劉強. 基于BAS-BP模型的風暴潮災害損失預測[J]. 海洋環(huán)境科學,2018,37(3):457-463.
[10] 何慶, 吳意樂, 徐同偉. 改進遺傳模擬退火算法在TSP優(yōu)化中的應用[J]. 控制與決策,2018,33(2):219-225.