參考文獻(xiàn)
[1] LI Yin, SONG Yuanjia, YANG Zhengwei, et al.Use of line laser scanning thermography for the defect detection and evaluation of composite material[J].Science and Engineering of Composite Materials,2022,29(1):74-83.
[2] 肖克來(lái)提. 表面缺陷檢測(cè)應(yīng)用研究綜述[J] . 電子技術(shù),2020,49(8):189-191.
[3] REN Z, FANG F, YAN N, et al.State of the art in defect detection based on machine vision[J].International Journal of Precision Engineering and Manufacturing-Green Technology,2022,9(2):661-691.
[4] DONG S, WANG P, ABBAS K.A survey on deep learning and its applications[J].Computer Science Review,2021,40:100379.
[5] MING Wuyi, ZHANG Shengfei, LIU Xuewen, et al.Survey of Mura Defect Detection in Liquid Crystal Displays Based on Machine Vision[J].Crystals,2021,11(12):1444.
[6] WANG Yangfan, WANG Chen, LONG Peng, et al.Recent advances in 3D object detection based on RGB-D:A survey[J].Displays,2021,70:102077.
[7] 楊佳琪,張世坤,范世超,等. 多視圖點(diǎn)云配準(zhǔn)算法綜述[J] . 華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2022,50(11):16-34.
[8] 韓瑞路. 航空發(fā)動(dòng)機(jī)葉片類零件三維重建與缺陷檢測(cè)關(guān)鍵技術(shù)研究[D]. 北京:北方工業(yè)大學(xué),2021.
[9] 劉陽(yáng)陽(yáng). 三維點(diǎn)云數(shù)據(jù)預(yù)處和分割算法的研究[D].西安:西安工程大學(xué),2019.
[10] 楊宜林,李積英,王燕,等. 基于 NDT 和特征點(diǎn)檢測(cè)的點(diǎn)云配準(zhǔn)算法研究[J] . 激光與光電子學(xué)進(jìn)展,2022,59(8):198-204.
[11] 宋成航,李晉儒,劉冠杰. 利用特征點(diǎn)采樣一致性改進(jìn) ICP 算法點(diǎn)云配準(zhǔn)方法[J]. 北京測(cè)繪,2021,35(3):317-322.
[12] 周亞男,喬勛. 基于逆向工程的三維激光掃描點(diǎn)云數(shù)據(jù)濾波方法[J]. 激光雜志,2021,42(9):170-174.
[13] EGUCHI M, KAWAMURA A, TOMIYAMA K, et al.A simplified method of detecting spot surface defects by using quasi-3D data from a conventional road profiler[J].Transportation Research Record,2019,2673(11):377-387.
[14] 朱秀敏,黃磊. 基于三維激光點(diǎn)云的零件表面缺陷檢測(cè)[J]. 儀表技術(shù)與傳感器,2022(7):56-60.
[15] LUO Lufeng, YIN Wei, NING Zhengtong, et al.In-field pose estimation of grape clusters with combined point cloud segmentation and geometric analysis[J].Computers and Electronics in Agriculture,2022,200:107197.
[16] 顏廷鈺. 基于點(diǎn)云的高精度測(cè)量與缺陷檢測(cè)[D] .南京:南京理工大學(xué),2019.
[17] 劉永治. 基于線激光掃描的零件三維表面缺陷檢測(cè)[D]. 西安:西安工程大學(xué),2021.
[18] CHU H H, WANG Z Y.A vision-based system for post-welding quality measurement and defect detection[J].The International Journal of Advanced Manufacturing Technology,2016,86(9):3007-3014.
[19] ZHANG D, ZOU Q, LIN H, et al.Automatic pavement defect detection using 3D laser profiling technology[J] . Automation in Construction,2018,96 :350-365.
[20] 羅宏亮. 基于點(diǎn)云特征的高鐵重軌表面缺陷三維輪廓測(cè)量方法[D]. 沈陽(yáng):東北大學(xué),2018.
[21] HONGSEOK P, MANI T U.Development of an inspection system for defect detection in pressed parts using laser scanned data[J].Procedia Engineering,2014,69:931-936.
[22] XIONG Z, LI Q, MAO Q, et al.A 3D laser profiling system for rail surface defect detection[J].Sensors,2017,17(8):1791.
[23] GUO M, SUN M, PAN D, et al.High-precision detection method for large and complex steel structures based on global registration algorithm and automatic point cloud generation[J].Measurement 2021,172 :108765.
[24] 宋淑雅. 基于改進(jìn)歐式聚類的點(diǎn)云分割方法[J] .計(jì)量與測(cè)試技術(shù),2022,49(5):96-100.
[25] 李留昭,皇攀凌,周軍,等. 多區(qū)域分割的三維激光點(diǎn)云障礙物檢測(cè)與應(yīng)用[J] . 激光雜志,2022,43(8):66-70.
[26] HUI T W, PANG G K H.Solder paste inspection using region-based defect detection[J].The International Journal of Advanced Manufacturing Technology,2009,42(7) :725-734.
[27] ZONG Yulong, JIN Liang, WANG Huan, et al.An intelligent and automated 3D surface defect detection system for quantitative 3D estimation and feature classification of material surface defects[J].Optics and Lasers in Engineering,2021,144 :106633.
[28] LIU W, LIU Z, LI Q, et al.High-precision detection method for structure parameters of catenary cantilever devices using 3-D point cloud data[J].IEEE Transactions on Instrumentation and Measurement,2020,70:1-11.
[29] 李炳臻,姜文志,顧佼佼,等. 基于卷積神經(jīng)網(wǎng)絡(luò)的目標(biāo)檢測(cè)算法綜述[J] . 計(jì)算機(jī)與數(shù)字工程,2022,50(5):1010-1017.
[30] ZHANG R, WU Y, ZHANG G, et al.Study on Huizhou architecture of point cloud registration based on optimized ICP algorithm[C]//IOP Conference Series:Earth and Environmental Science,2018.
[31] QI C R, YI L, SU H, et al.Pointnet++ :Deep Hierarchical Feature Learning on Point Sets in a Metric Space[C]// NIPS,2017.
[32] 張建民,陳富健,龍佳樂(lè). 基于圖像處理的點(diǎn)云濾波算法[J] . 激光與光電子學(xué)進(jìn)展,2021,58(6):229-240.
[33] LEE J H, OH H M, KIM M Y.Deep learning based 3D defect detection system using photometric stereo illumination[C]//2019 International Conference on Artificial Intelligence in Information and Communication(ICAIIC),2019.
[34] 陳亮. 基于 3D 視覺(jué)的輪胎成型缺陷檢測(cè)[D]. 青島:青島理工大學(xué),2020.
[35] 王磊. 基于光度立體的金屬板帶表面缺陷三維檢測(cè)方法[D]. 北京:北京科技大學(xué),2019.
[36] 鞠皋林. 基于卷積神經(jīng)網(wǎng)絡(luò)的 PCB 焊錫三維點(diǎn)云數(shù)據(jù)的缺陷檢測(cè)[D]. 上海:華東師范大學(xué),2022.
[37] EDRIS M Z B , JAWAD M S , ZAKARIA Z .Surface defect detection and neural network recognition of automotive body panels[C]//2015 IEEE International Conference on Control System, Computing and Engineering(ICCSCE),2015.
[38] WU K, TAN J, LI J, et al.Few-shot learning approach for 3D defect detection in lithium battery[C]//Journal of Physics :Conference Series,2021.
[39] ZHOU Y , TUZEL O . Voxelnet:End-to-end learning for point cloud based 3d object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018.
[40] YAN Y, MAO Y, LI B.Second :Sparsely embedded convolutional detection[J].Sensors,2018,18(10):3337.
[41] SHI S, GUO C, JIANG L, et al.Pv-rcnn:Pointvoxel feature set abstraction for 3d object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020.
[42] NASROLLAHI M, BOLOURIAN N, HAMMAD A.Concrete surface defect detection using deep neural network based on lidar scanning[C]//Proceedings of the CSCE Annual Conference,2019.
[43] 于浩. 基于激光掃描點(diǎn)云深度學(xué)習(xí)的斜軋穿孔機(jī)頂頭缺陷在線檢測(cè)[D]. 秦皇島:燕山大學(xué),2021.
[44] YAN Z, SHI B, SUN L, et al.Surface defect detection of aluminum alloy welds with 3D depth image and 2D gray image[J] .The International Journal of Advanced Manufacturing Technology,2020,110(3) :741-752.
[45] BESL P J, MCKAY N D.A method for registration of 3-D shapes[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(2):239-256.