Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁 >> 文章檢索 >> 往年索引

海流沖擊對IPT系統(tǒng)互感系數(shù)及傳輸性能影響研究

來源:電工電氣發(fā)布時間:2023-10-28 11:28 瀏覽次數(shù):191

海流沖擊對IPT系統(tǒng)互感系數(shù)及傳輸性能影響研究

高偉,朱天,劉楊,孫少華
(航空工業(yè)計算所,陜西 西安 710065)
 
    摘 要:海洋復(fù)雜的洋流運動沖擊會使耦合器初級側(cè)、次級側(cè)線圈相對位置發(fā)生變化,導(dǎo)致初級側(cè)線圈與次級側(cè)線圈互感發(fā)生變化,對感應(yīng)電能傳輸 (IPT) 系統(tǒng)的傳輸性能造成影響。研究了海流沖擊下 IPT 系統(tǒng)耦合線圈錯位對傳輸性能的影響,建立了 IPT 系統(tǒng)耦合線圈的有限元模型,通過實驗驗證了在一側(cè)耦合線圈發(fā)生橫向、軸向及有角度的偏轉(zhuǎn)時 IPT 系統(tǒng)的輸出電壓、電流以及輸出功率、傳輸效率的變化。
    關(guān)鍵詞: 感應(yīng)電能傳輸;海流沖擊;耦合線圈
    中圖分類號:TM724     文獻標(biāo)識碼:A     文章編號:1007-3175(2023)10-0012-06
 
Research on the Effect of Ocean Current Impact on Mutual Inductance
Coefficient and Transmission Performance of IPT System
 
GAO Wei, ZHU Tian, LIU Yang, SUN Shao-hua
(AVIC Xi’an Aeronautics Computing Technique Research Institute, Xi’an 710065, China)
 
    Abstract: The complex ocean current motion impact causes the relative position change of primary and secondary coupling coils, which leads to their mutual inductance variation, so the transmission performance of the Inductive Power Transfer(IPT) system is affected. The paper analyzes the influence of IPT system coupling coil displacement on the transmission performance under the ocean current impact, builds a finite element model of IPT system coupling coils, and makes experiments to verify the changes of output voltage, current, output power and transmission efficiency of IPT system as the lateral, axial and angular deflection of the coupling coil occurs on one side.
    Key words: inductive power transfer; ocean current impact; coupling coil
 
參考文獻
[1] LEE S , CHOI B , RIM C T . Dynamics Characterization of the Inductive Power Transfer System for Online Electric Vehicles by Laplace Phasor Transform[J].IEEE Transactions on Power Electronics,2013,28(12) : 5902-5909.
[2] LUO B, LONG T, GUO L, et al.Analysis and Design of Inductive and Capacitive Hybrid Wireless Power Transfer System for Railway Application[J].IEEE Transactions on Industry Applications,2020,56(3) :3034-3042.
[3] WU H H, GILCHRIST A, SEALY K D, et al.A High Efficiency 5 kW Inductive Charger for EVs Using Dual Side Control[J].IEEE Transactions on Industrial Informatics,2012,8(3) :585-595.
[4] GAO H, ZHANG N, LEI G, et al.Novel method and apparatus for wireless power transmission in a seawater environment[C]//12th IET International Conference on AC and DC Power Transmission,2016 :1-5.
[5] KOJIYA T, SATO F, MATSUKI H, et al.Automatic power supply system to underwater vehicles utilizing non-contacting technology[C]//Oceans'04 MTS/IEEE Techno-Ocean'04 (IEEE Cat.No.04CH37600),2004 :2341-2345.
[6] HASABA R, OKAMOTO K, KAWATA S, et al.Magnetic Resonance Wireless Power Transfer Over 10 m with Multiple Coils Immersed in Seawater[J].IEEE Transactions on Microwave Theory and Techniques,2019,67(11) : 4505-4513.
[7] ZHANG K, GAO W, SHI R, et al.An Impedance Matching Network Tuning Method for Constant Current Output Under Mutual Inductance and Load Variation of IPT System[J].IEEE Transactions on Power Electronics,2020,35(10) :11108-11118.
[8] ZHANG K, ZHANG X, ZHU Z, et al.A New Coil Structure to Reduce Eddy Current Loss of WPT Systems for Underwater Vehicles[J].IEEE Transactions on Vehicular Technology,2019,68(1) :245-253.
[9] ZHANG K, YE T, YAN Z, et al.Obtaining Maximum Efficiency of Inductive Power-Transfer System by Impedance Matching Based on Boost Converter[J].IEEE Transactions on Transportation Electrification,2020,6(2) :488-496.
[10] NGUYEN T D, LI S, LI W, et al.Feasibility study on bipolar pads for efficient wireless power chargers[C]//2014 IEEE Applied Power Electronics Conference and Exposition,2014 :1676-1682.