Suzhou Electric Appliance Research Institute
期刊號(hào): CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁(yè) >> 文章檢索 >> 往年索引

基于BP神經(jīng)網(wǎng)絡(luò)的低壓變頻器電壓暫降耐受能力評(píng)估

來(lái)源:電工電氣發(fā)布時(shí)間:2023-12-28 12:28 瀏覽次數(shù):184

基于BP神經(jīng)網(wǎng)絡(luò)的低壓變頻器電壓暫降耐受能力評(píng)估

郭微,楊家豪
(廈門大學(xué)嘉庚學(xué)院 機(jī)電工程與自動(dòng)化學(xué)院,福建 漳州 363105)
 
    摘 要:針對(duì)電壓暫降在工程中對(duì)變頻調(diào)速系統(tǒng)有較大影響的問題,利用 BP 神經(jīng)網(wǎng)絡(luò)對(duì)低壓變頻器遭受電壓暫降后的直流側(cè)電壓進(jìn)行預(yù)測(cè),建立負(fù)載功率、直流側(cè)電容、暫降深度、持續(xù)時(shí)間 4 個(gè)參數(shù)與變頻器直流側(cè)電壓的非線性映射關(guān)系。基于 MATLAB/Simulink 軟件建立仿真模型,調(diào)節(jié) 4 個(gè)參數(shù)進(jìn)行批量化仿真,針對(duì)不同電壓暫降類型獲得充足的數(shù)據(jù)樣本,建立 BP 神經(jīng)網(wǎng)絡(luò)進(jìn)行預(yù)測(cè),通過(guò)將直流側(cè)電壓預(yù)測(cè)值與保護(hù)定值作比較,評(píng)估低壓變頻器的電壓暫降耐受能力。算例結(jié)果表明,BP 神經(jīng)網(wǎng)絡(luò)模型預(yù)測(cè)精度較高,能夠準(zhǔn)確預(yù)測(cè)直流側(cè)電壓值,從而判斷低壓變頻器遭受電壓暫降后的保護(hù)動(dòng)作情況。
    關(guān)鍵詞: 電壓暫降;BP 神經(jīng)網(wǎng)絡(luò);低壓變頻器;耐受能力
    中圖分類號(hào):TM714 ;TN773     文獻(xiàn)標(biāo)識(shí)碼:A     文章編號(hào):1007-3175(2023)12-0049-05
 
Assessment of Voltagesag Tolerance of Low-Voltage Convertor
Based on BP Neural Network
 
GUO Wei, YANG Jia-hao
(School of Mechanical and Electrical Engineering & Automation, Xiamen University Tan Kah Kee College, Zhangzhou 363105, China)
 
    Abstract: In view of the problem that voltagesag has a great impact on the frequency conversion speed regulation system in engineering,the BP neural network is used to predict the DC side voltage after voltagesag of low-voltage convertor, and the nonlinear mapping relationship of load power, DC side capacitor, depth of voltage dip, duration and the DC side voltage of the convertor is established. First, the simulation model was built based on MATLAB/Simulink, four parameters were adjusted for mass simulation, sufficient data samples were obtained for different types of voltagesag. Then, the BP neural network was established for prediction, the voltagesag tolerance of low-voltage convertor was evaluated by comparing the DC side voltage predicted and protecteed value. The results show that the BP neural network model has high prediction accuracy and can accurately predict the DC side voltage value, so as to judge the protection action of low-voltage convertor after voltage sag.
    Key words: voltagesag; BP neural network; low-voltage convertor; tolerance
 
參考文獻(xiàn)
[1] 莫文雄,許中,馬智遠(yuǎn),等. 變頻調(diào)速系統(tǒng)的電壓暫降免疫度計(jì)算及關(guān)鍵參數(shù)設(shè)計(jì)[J] . 電力系統(tǒng)自動(dòng)化,2018,42(18) :157-161.
[2] 蔣素瓊. 一種用于檢測(cè)電壓暫降的新方法[J] . 電氣技術(shù),2016,17(11) :56-61.
[3] 李晨懿,汪坤,盧文清,等. 變頻器對(duì)不同類型電壓暫降的耐受特性研究[J] . 電測(cè)與儀表,2018,55(15) :1-7.
[4] 陶順,唐松浩,陳聰,等. 變頻調(diào)速器電壓暫降耐受特性試驗(yàn)及量化方法研究Ⅰ :機(jī)理分析與試驗(yàn)方法[J]. 電工技術(shù)學(xué)報(bào),2019,34(6) :1273-1281.
[5] 徐永海,李晨懿,汪坤,等. 低壓變頻器對(duì)電網(wǎng)電壓暫降耐受特性及兼容性研究[J] . 電工技術(shù)學(xué)報(bào),2019,34(10) :2216-2229.
[6] 龔博,趙建陽(yáng),劉會(huì)巧. 基于靜止無(wú)功發(fā)生器分相控制的電壓暫降治理技術(shù)[J] . 電氣技術(shù),2020,21(9) :33-38.
[7] IEEE Industry Applications Society.Trial-Use Recommended Practice for Voltage Sag and Short Interruption Ride-Through Testing for End-Use Electrical Equipment Rated Less than 1 000 V :IEEE Std 1668—2014[S].New York :IEEE Industry Applications Society,2014 :15-16.
[8] 張志勇,張猛,陸金桂. 基于改進(jìn) BP 神經(jīng)網(wǎng)絡(luò)的液壓支架前連桿疲勞壽命預(yù)測(cè)[J] . 煤礦機(jī)械,2023,44(2) :177-179.
[9] 周凱,郭倩雯,欒樂,等. 可調(diào)速驅(qū)動(dòng)設(shè)備暫態(tài)電壓擾動(dòng)耐受能力快速評(píng)估方法[J] . 中國(guó)測(cè)試,2020,46(7) :75-82.
[10] 肖鋒.BP 神經(jīng)網(wǎng)絡(luò)在步進(jìn)電機(jī)細(xì)分控制的應(yīng)用[J].電氣技術(shù),2015,16(10) :120-122.
[11] 王飛,鄭張麗,郭靜靜,等. 基于神經(jīng)網(wǎng)絡(luò)的公路工程造價(jià)預(yù)測(cè)模型[J] . 河北工程大學(xué)學(xué)報(bào)(自然科學(xué)版),2014,31(4) :102-104.
[12] 陳明.MATLAB 神經(jīng)網(wǎng)絡(luò)原理與實(shí)例精解[M]. 北京:清華大學(xué)出版社,2013.