Suzhou Electric Appliance Research Institute
期刊號(hào): CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁(yè) >> 文章檢索 >> 文章瀏覽排名

氫電混輸直流超導(dǎo)電纜研究進(jìn)展及安全設(shè)計(jì)研究

來(lái)源:電工電氣發(fā)布時(shí)間:2024-04-07 14:07 瀏覽次數(shù):436

氫電混輸直流超導(dǎo)電纜研究進(jìn)展及安全設(shè)計(jì)研究

朱紅亮
(富通集團(tuán)(天津)超導(dǎo)技術(shù)應(yīng)用有限公司 天津市超導(dǎo)電纜應(yīng)用重點(diǎn)實(shí)驗(yàn)室,天津 300384)
 
    摘 要:超導(dǎo)氫電混合旨在實(shí)現(xiàn)液氫清潔能源和超導(dǎo)電力能源共同輸運(yùn),不僅可以節(jié)約冷卻成本,同時(shí)可以提升超導(dǎo)電纜通流能力,是實(shí)現(xiàn)超導(dǎo)電力大規(guī)模應(yīng)用的有效技術(shù)手段。闡述了氫電混輸直流超導(dǎo)電纜研究進(jìn)展,對(duì)超導(dǎo)電纜在液氫環(huán)境下的混輸結(jié)構(gòu)設(shè)計(jì)方法進(jìn)行了研究,并給出了安全設(shè)計(jì)原則與應(yīng)急預(yù)案,為氫電混輸直流超導(dǎo)電纜優(yōu)化設(shè)計(jì)提供了參考。
    關(guān)鍵詞: 直流超導(dǎo)電纜;氫電混輸;熱絕緣;冷絕緣
    中圖分類號(hào):TM757     文獻(xiàn)標(biāo)識(shí)碼:A     文章編號(hào):1007-3175(2024)03-0001-05
 
Research Progress and Safety Design of Hydrogen-Electric
Hybrid Transmission DC Superconducting Cables
 
ZHU Hong-liang
(Futong Group (Tianjin) Superconductor Technologies and Applications Co., Ltd. Tianjin Key
Laboratory of Superconducting Cable Applications, Tianjin 300384, China)
 
    Abstract: Superconducting hydrogen-electric hybrid aims to realize the joint transportation of liquid hydrogen clean energy and superconducting power energy, which can not only save cooling costs, but also improve the flow capacity of superconducting cables, and it is an effective technical means to realize the large-scale application of superconducting electricity. In this paper, the research progress of hydrogen-electric hybrid DC superconducting cable is expounded, the design method of superconducting cable mixed transportation structure in liquid hydrogen environment is studied, and the safety design principles and emergency plan are given, which provides a reference for the optimal design of hydrogen-electric hybrid DC superconducting cable.
    Key words: DC superconducting cable; hydrogen-electric hybrid transmission; thermal insulation; cold insulation
 
參考文獻(xiàn)
[1] 郭偉,唐人虎.2060 碳中和目標(biāo)下的電力行業(yè)[J] .能源,2020(11) :19-26.
[2] 黃晶.中國(guó) 2060 年實(shí)現(xiàn)碳中和目標(biāo)亟需強(qiáng)化科技支撐[J].可持續(xù)發(fā)展經(jīng)濟(jì)導(dǎo)刊,2020(10) :15-16.
[3] 張平祥,閆果,馮建情,等. 強(qiáng)電用超導(dǎo)材料的發(fā)展現(xiàn)狀與展望[J]. 中國(guó)工程科學(xué),2023,25(1) :60-67.
[4] 嚴(yán)陸光,周孝信,甘子釗,等. 關(guān)于發(fā)展高溫超導(dǎo)輸電的建議[J]. 電工文摘,2015(1) :1-8.
[5] 肖立業(yè),林良真. 超導(dǎo)輸電技術(shù)發(fā)展現(xiàn)狀與趨勢(shì)[J] .電工技術(shù)學(xué)報(bào),2015,30(7) :1-9.
[6] 朱紅亮,曹雨軍,夏芳敏,等. 高溫超導(dǎo)電纜制冷系統(tǒng)設(shè)計(jì)控制方案及試驗(yàn)驗(yàn)證[J] . 真空與低溫,2021,27(6) :543-548.
[7] 李繼春,張立永,曹雨軍,等. 冷絕緣高溫超導(dǎo)電纜循環(huán)冷卻系統(tǒng)設(shè)計(jì)及運(yùn)行分析[J] . 低溫與超導(dǎo),2020,48(2) :7-11.
[8] 楊天慧,信贏,李文鑫. 滿足電力與能源液體雙重輸送管道建設(shè)的超導(dǎo)材料需求和發(fā)展現(xiàn)狀[J]. 中國(guó)電機(jī)工程學(xué)報(bào),2022,42(z1) :215-225.
[9] ISHIGOHKA T.A feasibility study on a world-wide-scale superconducting power transmission system [J].IEEE Transactions on Applied Superconductivity: A Publication of the IEEE Superconductivity Committee,1995,5(2) :949-952.
[10] GRANT P M.The supercable: Dual delivery of chemical and electric power[J].IEEE Transactions on Appiled Superconductivity,2005,15(2) :1810-1813.
[11] TREVISANI L, FABBRI M, NEGRINI F.Long-term scenarios for energy and environment: Energy from the desert with very large solar plants using liquid hydrogen and superconducting technologies[J].Fuel Processing Technology,2006,87(2) :157-161.
[12] TREVISANI L, FABBRI M, NEGRINI F.Long distance renewable-energy-sources power transmission using hydrogen-cooled MgB2 superconducting line[J].Cryogenics,2007,47(2) :113-120.
[13] YAMADA S, HISHINUMA Y, UEDE T, et al.Study on 1 GW class hybrid energy transfer line of hydrogen and electricity[J].Journal of Physics:Conference Series,2008,97(1) :012167.
[14] YAMADA S, HISHINUMA Y, UEDE T, et al.Conceptual design of 1 GW class hybrid energy transfer line of hydrogen and electricity[J].Journal of Physics: Conference Series,2010,234(3) :032064.
[15] 黃晟,翟雨佳,黃守道,等. 一種海上離網(wǎng)型超導(dǎo)風(fēng)電制備液氫的方法及裝置:C N202210428868.6[P] .2023-07-19.
[16] NAKAYAMA T, YAGAI T, TSUDA M, et al.Micro power grid system with SMES and superconducting cable modules cooled by liquid hydrogen[J].IEEE Transactions on Applied Superconductivity,2009,19(3) :2062-2065.
[17] VYSOTSKY V S, NOSOVA A, TETISOVS S, et al.Hybrid energy transfer line with liquid hydrogen and superconducting MgB2 cable—First experimental proof of concept[J].IEEE Transactions on Applied Superconductivity,2013,23(3) :5400906.
[18] VYSOTSKY V S, BLAGOV E V, KOSTYUK V V, et al.New 30-m flexible hybrid energy transfer line with liquid hydrogen and superconducting MgB2 cable: Development and test results[J].IEEE Transactions on Applied Superconductivity,2015,25(3) :5400205.
[19] KOSTYUK V V, BLAGOV E V, ANTYUKHOV I V, et al.Cryogenic design and test results of 30-m flexible hybrid energy transfer line with liquid hydrogen and superconducting MgB2 cable[J].Cryogenics,2015,66 :34-42.
[20] 李振明,崔亞林,劉偉,等. 液氫溫區(qū)超導(dǎo)電纜本體設(shè)計(jì)與短樣試驗(yàn)[J]. 低溫與超導(dǎo),2018,46(1) :54-58.
[21] TAITO M,YASUYUKI S,MASAHIRO S, et al.Experiment and Simulation for Normal Zone Propagation of Multifilament MgB2 Superconducting Wire Cooled by Liquid Hydrogen[J].IEEE Transactions on Applied Superconductivity,2019,29(5) :1-6.
[22] 金建勛. 高溫超導(dǎo)電纜與輸電[M]. 北京:科學(xué)出版社,2021.
[23] 崔亞林. 液氫環(huán)境下超導(dǎo)電纜結(jié)構(gòu)設(shè)計(jì)與性能分析研究[D]. 北京:北京交通大學(xué),2017.
[24] 陳卓正,李華強(qiáng),鐘力生. 聚丙烯層壓紙絕緣電纜發(fā)展現(xiàn)狀[J]. 絕緣材料,2022,55(11) :1-9.
[25] 趙瑞彬. 高臨界電流超導(dǎo)磁體結(jié)構(gòu)優(yōu)化與安全運(yùn)行分析[D]. 成都:四川師范大學(xué),2022.